NEWS FROM THE ELECTROWEAK SM FIT AND CONSTRAINTS ON SM EXTENSIONS

Dörthe Kennedy (DESY/University of Hamburg)
for the Gfitter Group*

LoopFest XI, Pittsburgh
May 11th 2012

* M. Baak, M. Goebel, J. Haller, A. Höcker, D. K., K. Möning, M. Schott, J. Stelzer
INTRODUCTION TO Gfitter

1. **Goal**
 - provide state-of-the-art model testing tool for LHC era

2. **Input to Gfitter**
 - electroweak precision measurements from LEP, SLD, Tevatron and LHC
 - theoretical predictions

3. **The Gfitter Package**
 - C++, ROOT, xml
 - Core Package: data handling, fitting and statistics tools
 - full statistics analysis
 - parameter scans
 - p-values
 - toy MC analyses
 - goodness-of-the-fit tests
 - physics libraries

REFERENCE PAPER:
EPJ C60, 543-583, 2009 [ARXIV:0811.0009]

UPDATE & BSM:
ACCEPTED BY EPJ C, [ARXIV:1107.0975]
HTTP://WWW.CERN.CH/GFITTER

Dörthe Kennedy – EW Fit with Gfitter

Loopfest XI May 2012
INTRODUCTION TO GFITTER

4. SM: global electroweak Fit
- constraints on M_H
- constraints on M_W, m_t
- determination of $\alpha_s, \sin^2\theta_{\text{eff}}$
- pull-values of electroweak observables

5. BSM physics models – STU Parameter
- introduce oblique parameters
- ew fit - sensitive to BSM physics through oblique corrections
- SM vs. BSM physics

REFERENCE PAPER:
EPJ C60, 543-583, 2009 [ARXIV:0811.0009]

UPDATE & BSM:
ACCEPTED BY EPJ C, [ARXIV:1107.0975]
HTTP://WWW.CERN.CH/GFITTER

Dörthe Kennedy – EW Fit with Gfitter

Loopfest XI May 2012
THE ELECTROWEAK FIT WITH GFITTER
The Electroweak Fit: Experimental Input I

- **Z-pole observables** including their correlations: LEP/SLD experiments

 \[M_W = 80.385 \pm 0.015 \text{GeV} \]

 [ADLO+SLD, Phys. Rept. 427, 257 (2006)]

- **new W mass measurements** from D0 and CDF combined with LEP result:

 \[M_W = 80.385 \pm 0.015 \text{GeV} \]

 [ADLO, hep-ex/0612034][D0,arXiv:1203.0293]
 [CDF,arXiv:1203.0275][LEPEWWG]

- **Γ_W**: LEP/Tevatron

 [ADLO, hep-ex/0612034][CDF& D0, arXiv:0908.1374]

- **m_c, m_b**: world averages

- **m_t**: Tevatron using 5.8 fb\(^{-1}\)

 [D0& CDF, arXiv:1107.5255]

- **Δα^{(5)}_{had} (M_Z^2)**: including a_s dependency

 [Davier et al. EPJ C71 (2011)]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input value</th>
<th>Free in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>yes</td>
</tr>
<tr>
<td>$Γ_Z$ [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>–</td>
</tr>
<tr>
<td>$σ_{had}^0$ [nb]</td>
<td>41.540 ± 0.037</td>
<td>–</td>
</tr>
<tr>
<td>R_0^0</td>
<td>20.767 ± 0.025</td>
<td>–</td>
</tr>
<tr>
<td>$A_{FB}^{0,\ell}$</td>
<td>0.0171 ± 0.0010</td>
<td>–</td>
</tr>
<tr>
<td>$A_\ell (\tau)$</td>
<td>0.1499 ± 0.0018</td>
<td>–</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027</td>
<td>–</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020</td>
<td>–</td>
</tr>
<tr>
<td>$A_{FB}^{0,c}$</td>
<td>0.0707 ± 0.0035</td>
<td>–</td>
</tr>
<tr>
<td>$A_{FB}^{0,b}$</td>
<td>0.0992 ± 0.0016</td>
<td>–</td>
</tr>
<tr>
<td>R_c^0</td>
<td>0.1721 ± 0.0030</td>
<td>–</td>
</tr>
<tr>
<td>R_b^0</td>
<td>0.21629 ± 0.00066</td>
<td>–</td>
</tr>
<tr>
<td>$\sin^2\theta^F_{\text{eff}} (Q_{FB})$</td>
<td>0.2324 ± 0.0012</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>95% CL limits</th>
<th>Free in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_H [GeV](^{(0)})</td>
<td>95.32 ± 0.06</td>
<td>yes</td>
</tr>
<tr>
<td>M_W [GeV]</td>
<td>80.385 ± 0.015</td>
<td>–</td>
</tr>
<tr>
<td>$Γ_W$ [GeV]</td>
<td>2.085 ± 0.042</td>
<td>–</td>
</tr>
<tr>
<td>m_c [GeV]</td>
<td>1.27 ± 0.07(^{-0.11})</td>
<td>yes</td>
</tr>
<tr>
<td>m_b [GeV]</td>
<td>4.20 ± 0.17(^{-0.07})</td>
<td>yes</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.2 ± 0.9</td>
<td>yes</td>
</tr>
<tr>
<td>$Δα_{\text{had}} (M_Z^2)$(^{(12)})</td>
<td>2757 ± 10</td>
<td>yes</td>
</tr>
<tr>
<td>$α_s (M_Z^2)$</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Dörthe Kennedy – EW Fit with Gfitter
The Electroweak Fit: Experimental Input II

• **direct Higgs mass exclusions (at 95% CL):**

 o **LEP:** $M_H > 114$ GeV

 o **Tevatron:** **100-119 GeV** and **141-184 GeV**

 o **ATLAS:** **110-117.5 GeV**, **118.5-122.5 GeV**, and **129-539 GeV**
 [ATLAS-CONF-2012-019]

 o **CMS:** **127.5-600 GeV**
 [CMS-PAS-HIG-12-008]

 o **LHC+Tevatron:** excess at 125 GeV

Allowed Regions

- **117.5 – 118.5 GeV**
- **122.5 – 127.5 GeV**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input value</th>
<th>Free in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>yes</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>–</td>
</tr>
<tr>
<td>σ^0_{had} [nb]</td>
<td>41.540 ± 0.037</td>
<td>–</td>
</tr>
<tr>
<td>R^0_ℓ</td>
<td>20.767 ± 0.025</td>
<td>–</td>
</tr>
<tr>
<td>A_{FB}^0</td>
<td>0.0171 ± 0.0010</td>
<td>–</td>
</tr>
<tr>
<td>$A_{FB}^0(\ell)$</td>
<td>0.1499 ± 0.0018</td>
<td>–</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027</td>
<td>–</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020</td>
<td>–</td>
</tr>
<tr>
<td>A_{FB}^0</td>
<td>0.0707 ± 0.0035</td>
<td>–</td>
</tr>
<tr>
<td>$A_{FB}^0(\ell)$</td>
<td>0.0992 ± 0.0016</td>
<td>–</td>
</tr>
<tr>
<td>R^0_ℓ</td>
<td>0.1721 ± 0.0030</td>
<td>–</td>
</tr>
<tr>
<td>R^0_b</td>
<td>0.21629 ± 0.00066</td>
<td>–</td>
</tr>
<tr>
<td>$\sin^2\theta_{eff}(Q_{FB})$</td>
<td>0.2324 ± 0.0012</td>
<td>–</td>
</tr>
</tbody>
</table>

M_H [GeV] (°)

<table>
<thead>
<tr>
<th>Input value</th>
<th>95% CL limits</th>
<th>Free in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_W [GeV]</td>
<td>80.385 ± 0.015</td>
<td>–</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.085 ± 0.042</td>
<td>–</td>
</tr>
<tr>
<td>\bar{m}_c [GeV]</td>
<td>1.27 ± 0.07</td>
<td>yes</td>
</tr>
<tr>
<td>\bar{m}_b [GeV]</td>
<td>4.20 ± 0.17</td>
<td>yes</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.2 ± 0.9</td>
<td>yes</td>
</tr>
<tr>
<td>$\Delta\sigma_{had}(M_Z^2)$ (4Δ)</td>
<td>2757 ± 10</td>
<td>yes</td>
</tr>
<tr>
<td>$\alpha_s(M_Z^2)$</td>
<td>–</td>
<td>yes</td>
</tr>
</tbody>
</table>

δ_{tH}, M_W [MeV]

| –4.4 | yes |

δ_{tH} sin^2θ_{eff}(t)

| –4.7, 4.7 | yes |

* Dörthe Kennedy – EW Fit with Gfitter
The Electroweak Fit: Theoretical Input I

- Electroweak precision observables expressed as functions of the free SM parameters:

\[M_Z, M_H, m_t, \Delta \alpha^{(5)}_{\text{had}}(M_Z^2), \alpha_s(M_Z^2), m_c, m_b \]

- Most important predictions for constraining the Higgs mass:
 - \(M_W \) and \(\sin^2\theta^f_{\text{eff}} \): full two-loop + leading beyond-two-loop correction
 - Theoretical uncertainties (due to e.g. truncation of higher QCD orders):
 - \(M_W \) (\(\delta M_W = 4 \text{ MeV} \)) and \(\sin^2\theta^f_{\text{eff}} \) (\(\delta \sin^2\theta^f_{\text{eff}} = 4.7 \cdot 10^{-5} \))
 - \(\sin^2\theta^f_{\text{eff}} \) defines asymmetry parameter and forward-backward asymmetry

- Width of W boson not crucial for fit due to large experimental uncertainty
 - [Hagiwara et al., arXiv:1104.1769]
The Electroweak Fit: Theoretical Input II

- partial Z widths (or ratio of them)
 - important for determination of α_s
 - Z couplings implemented by parametrization
 - one-loop, partly at two-loop level for $O(\alpha\alpha_s)$
 [Hagiwara et al., arXiv:1104.1769)][more information in DESY-THESIS-2011-029]
 - Correction applied for large Higgs masses ($M_H>500$ GeV)
 - accounting for difference between ZFitter and parametrization
 [Bardin et al, CPC 133,299(2001)][Arbuzov et al., CPC 174,728(2006)]
 - radiator functions describe final QCD and QED radiation
- including N3LO to hadronic Z decay

- Include new R_b calculation
 [Freitas and Huang, arxiv:1205.0299]
The Electroweak Fit: Constraints on Higgs mass

- M_H from fit including all data except results from direct Higgs searches at LEP, Tevatron, LHC
 - value at minimum $\pm 1\sigma$: $M_H = 94^{+25}_{-22}$ GeV
- 95% (99%) upper bound: 152 GeV (176 GeV)
The Electroweak Fit: New M_W

- new M_W measurement improves the 95% and 99% CL limits
The Electroweak Fit: SM Fit Results

- **goodness-of-the fit:**
 - excl. (incl.) direct Higgs searches:
 - $\chi^2_{\text{min}} = 20.3 \ (21.8)$
 - $\text{Prob}(\chi^2_{\text{min}}, 13(14)) = 0.09 \ (0.08)$
 - reduced by new R_b calculation
 - values before 2011:
 - $\chi^2_{\text{min}} = 16.6 \ (17.8)$
 - $\text{Prob}(\chi^2_{\text{min}}, 13(14)) = 0.21 \ (0.23)$

- **pull values (incl. direct Higgs searches)**
 - increased pull-value of R_b: -0.8 \rightarrow -2.3
 - $A_0^{0,b\text{FB}}$ largest contributor to χ^2_{min}
 - no individual pull exceeds 3σ
 - small contributions from $M_Z, \Delta \alpha^{(5)}_{\text{had}}(M_Z^2)$, m_c, m_b
 - input accuracies exceed fit requirements

- **good agreement between data and SM**
The Electroweak Fit: Determination of m_t

- direct top mass measurement is not included
 - fit excluding (including) direct Higgs searches
 - fit with fixed Higgs mass
- fit results in agreement with direct measurements

![Graph showing $\Delta \chi^2$ vs. m_t with different fits and measurements.](image)

w/o direct Higgs searches
- $171.1^{+6.8}_{-5.2}$ GeV

with direct Higgs searches
- $175.1^{+3.3}_{-2.4}$ GeV
The Electroweak Fit: Determination of M_W

- direct W mass measurement is not included
 - fit excluding (including) direct Higgs searches
 - fit with fixed Higgs mass
- fit results in agreement with direct measurements
- indirect determination higher precision than world average

- $80.363 \pm 0.028 \text{ GeV}$
- $80.361 \pm 0.013 \text{ GeV}$
The Electroweak Fit: Scan of m_t and M_W

- green bands: world average, agree with indirect constraints
- direct Higgs searches constrain both observables significantly
- possible to probe SM or BSM physics models

-loopfest XI May 2012

Dörthe Kennedy – EW Fit with Gfitter

14
CONSTRAINTS ON NEW PHYSICS MODELS

68%, 95%, 99% CL fit contours
\(M_H = 120 \text{ GeV}, m_t = 173 \text{ GeV}, U = 0 \)

\(M_H \in [117.5, 127.5] \text{ GeV} \)
\(m_t = 173.2 \pm 0.9 \text{ GeV} \)
"Oblique" Parameters

1. **assumption:** high-scale BSM physics appears only through vacuum polarisation corrections (cf. rad. corr. from mt, MH in SM)

2. **ew fit sensitive to BSM physics through these oblique corrections**

3. **oblique corrections** from New Physics described through **STU parametrization**

\[O = O_{SM;ref} (M_H; m_t) + c_S S + c_T T + c_U U \]

4. **STU measure deviations** from electroweak radiative correction expected in SM_{ref}

S: new physics contribution to **neutral current processes**

U: (+S) new physics contribution to **charged current processes**

- U only sensitive to \(M_W \) and \(\Gamma_W \)
- usually very small in new physics models (often: \(U=0 \))

T: difference between neutral and charged current processes

- sensitive to weak isospin violation
• S, T, U derived from fit to electroweak observables
 o SM_{ref}: $m_t = 173$ GeV, $M_H = 120$ GeV

• results for STU:
 o $S = 0.04 \pm 0.10$, $T = 0.05 \pm 0.11$, $U = 0.08 \pm 0.11$

• gray area: SM prediction
 o for SM_{ref}: $S = T = U = 0$
 o S, T: logarithmically dependent on M_H
 o small M_H compatible with data

• BSM physics models
 o large S-T area allowed due to unconstrained model parameters
 o heavy Higgs masses due to compensation

• status of recent publication
 o update is in progress
 o new m_t, M_H partially included
 o no new M_W, R_b, N3LO to hadronic Z decay

● Dörthe Kennedy – EW Fit with Gfitter
models with a fourth generation
 - SM: no explanation for n=3 generations
 - introduction of new states for leptons and quarks
 \[\Psi_L = (\Psi_1^L, \Psi_2^L), \Psi_1^R, \Psi_2^R \]

free parameters:
 - masses of new quarks and leptons
 \[m_{\nu 4}, m_{d 4}, m_{e 4} \]
 - assuming: no mixing of extra fermions
 - model-independent

contribution to STU from new fermions

sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

results:
 - with appropriate mass differences: 4th fermion model consistent with data
 - large MH is allowed
 - data prefer a heavier charged lepton

Dörthe Kennedy – EW Fit with Gfitter

Loopfest XI May 2012 • 18
Sequential Fourth Generation

[Hubisz et al., JHEP 0601:135 (2006)]

- models with a fourth generation
 - SM: no explanation for n=3 generations
 - introduction of new states for leptons and quarks
 \[\Psi_L = (\Psi_{1,2}, \Psi_{1,R}, \Psi_{2,R}) \]

- free parameters:
 - masses of new quarks and leptons
 \[mu_4, \; md_4, \; me_4 \; m_4 \]
 - assuming: no mixing of extra fermions
 - model-independent

- contribution to STU from new fermions

- sensitivity to mass difference between up-type and down-type fields, rather than absolute mass scale

- results:
 - with appropriate mass differences: 4th fermion model consistent with data
 - large MH is allowed
 - data prefer a heavier charged lepton
Warped Extra Dimension

- extra dimension (ED) confined by two branes for solving hierarchy problem
- generation of weak scale on IR brane from UV brane: introduction of warp factor (exp. func. of compactification radius of ED)
- originally: ED only accessible to gravity
- here: SM fermions, gauge bosons propagate into bulk, Higgs does not
- free parameters
 - MKK : KK scale (heavy KK modes)
 - L: log of warp factor
- results:
 - large L requires large MKK
 - compensation if MH is large

Dörthe Kennedy – EW Fit with Gfitter
Warped Extra Dimension

- extra dimension (ED) confined by two branes for solving hierarchy problem
- generation of weak scale on IR brane from UV brane: introduction of warp factor (exp. func. of compaction radius of ED)
- originally: ED only accessible to gravity
- here: SM fermions, gauge bosons propagate into bulk, Higgs does not
- free parameters
 - MKK: KK scale (heavy KK modes)
 - L: log of warp factor
- results:
 - large L requires large MKK
 - compensation if MH is large

Dörthe Kennedy – EW Fit with Gfitter
Two-Higgs Doublet Model I

- different 2HDM types:
 - Type-I: only one doublet couples to fermion sector
 - Type-II: one doublet couples to up-type fermions, one to down-type fermions, resembles Higgs sector of MSSM
 - type distinction irrelevant for study of oblique corrections
 - defined according to Yukawa couplings, do not enter oblique corrections at one-loop order

- free parameters:
 - Higgs masses $M_{h0}, M_{H0}, M_{A0}, M_H$
 - LEP limit: $M_H > 78.6$ GeV
 - ratio of the vev of the two doublets, $\tan\beta = v_2/v_1$ (mixing of charged and neutral fields)
 - angle α (mixing of the neutral CP-even Higgs fields)

- introduce one additional $SU(2)_L \times U(1)_Y$ Higgs doublet with hypercharge $Y = 1$
- 2 Higgs doublets \rightarrow 5 physical Higgs boson states
- FCNC can be suppressed with appropriate choice of the Higgs-to-fermion couplings
Two-Higgs Doublet Model II

[111x495]

Dörthe Kennedy – EW Fit with Gfitter

Loopfest XI May 2012 23

- parameter constraints only dependent of other parameters
- for light M_{h0}:
 - similar values of the heavy Higgs masses preferred
Many More Models

- Littlest Higgs Model
- Inert Doublet Model
- Warped Extra Dimension with Custodial Symmetry
- One Universal Extra Dimension
- Large Extra Dimensions

Dörthe Kennedy – EW Fit with Gfitter
Loopfest XI May 2012
Conclusion

Standard Model
- global fit of the electroweak SM
- good compatibility of the SM and the electroweak precision data
- inclusion of latest direct Higgs searches
 - Higgs mass strongly constrained
 - light Higgs preferred by SM
- inclusion of the latest R_b calculations

BSM physics models
- test compatibility of various BSM models with electroweak precision data via the oblique parameters
- set constraints on BSM model parameters
- heavier Higgs boson allowed in various BSM models
THANK YOU FOR YOUR ATTENTION!

REFERENCE PAPER: EPJC60, 543-583, 2009 [ARXIV:0811.0009]
UPDATE & BSM: ACCEPTED BY EPJC, [ARXIV:1107.0975]
HTTP://WWW.CERN.CH/GFITTER
Statistical Interpretation of Direct Higgs Searches

- **Statistical interpretation**
 - Experiments measure test statistic
 - Transformed by experiments into 1-sided upper limit (CLS=CLS+B/CLB) using pseudo experiments
 - We transform 1-sided CLS+B into 2-sided CL2sS+B
 - SM is null hypothesis. We measure both down- and upward deviations from SM!
 - χ^2 contribution calculated via inverse error function:
 $$d\chi^2 = \text{Erf}^{-1}(1-\text{CL2sS+B})$$

- **Alternative treatment, followed here:**
 - χ^2 contribution is: -2lnQ
 - Lacks statistical information from experiments.
 - No 2-sided interpretation
 - ATLAS CLS+B not public

- **Note about combination of ATLAS and CMS H→WW results**
 - Ignores correlations between x-section theory and luminosity uncertainties!
 - Tevatron/LHC combination procedure needed

- Dörthe Kennedy – EW Fit with Gfitter

Graph:
- Direct Searches at LEP
- Direct Searches at Tevatron
- Direct Searches at ATLAS
- Direct Searches at CMS

Legend:
- LEP, Tevatron, LHC combined

Axes:
- M_H [GeV]
- $\delta\chi^2$

Title:
- Loopfest XI May 2012

Page Number:
- 28